

<u>Cl</u>	JRRENT SENSING MODULE APPLICATION NOTE	2
1.	COMMUNICATION INTERFACE FORMAT	2
2.	OPERATING MODE	2
3.	MEASURING METHOD: (CONTINUOUS MODE)	2
4.	MEASURING METHOD: (MODBUS-RTU)	3
5.	APPLICATION DIAGRAM:	7
6.	WCM-LCD4X32	9
<u>A</u>	PPLICATION EXAMPLE ON ARDUINO	<u>11</u>
1.	INSTRUCTIONS FOR ARDUINO	11
2.	CONTINUOUS MODE	12
	SCHEMATIC DIAGRAM	12
	WIRING DIAGRAM	13
	SOFTWARE & PROGRAM	14

Current Sensing Module Application Note

1. Communication Interface Format

	UART TTL
Interface	RS232 / RS485
	(Need to connect RS232/RS485 signal converter)
Rate	9600 bps
Format	Parity bit: None , Data bit: 8 , Stop bit: 1

2. Operating Mode

(2.1)Continuous Mode: 8 Data Byte, update rate: 3 data/s, reset time: 1s (2.2)Modbus-RTU Mode: use master-slave request / response communication

3. Measuring Method: (Continuous Mode)

(3.1) DC50C (DC) / 50C (AC/DC): The residual magnetism of the sensor could affect the measurement accuracy. When first use or switching the measurement direction, it is recommended to provide the test current first, and then reset the sensor when zero current pass.

(3.2) AC50C (AC): after power-on, the sensor will automatically reset the current value when zero current pass through the sensor. To measure the effective current, zero current value can also be forced to reset through the reset pin (RST).

(3.3)Zeroing: when there is no current flowing through the current sensor, you can use the RST pin to reset the zero value of current. The proper use of this function will make the measurement more accurate. When measuring DC current, the sensor will generate an amount of remanence. If this remanence cause reading error, please re-zero it.

4. Measuring Method: (Modbus-RTU)

50C (Modbus-RTU) : use "Reset Command" to reset current when no current passes through the sensor, after power-on.

Modbus Parameter List

Item	Address	Byte	R/W	Description
Reset	Reset 0x0000 2 Writ		Write	Input 256 to Reset
				Hexadecimal signed (HEX),
Current	0x0002	4	Read	Unit:0.001A
				Current= HEX / 1000 (A)
	0x0004	4	Read	Hexadecimal signed (HEX),
Temperature				Unit:0.1°C
				Temperature= HEX / 10 (°C)
Slave	ve Ovoca 2 Write		Write	Default address: 1
Address	0x0010	2	vviite	Input address1~247
DC / AC	0x0020	2	Write	0: DC / 1: AC (1)

⁽¹⁾ Apply to versions after April 2024.

Modbus-RTU Data Format

Slave Address	Function Code	Data	Check Code (CRC16)
1 Byte	1 Byte	N x Byte	2 Byte (Low byte first)

Function Code

Function Code	Description		
03H	Read up to 125 continuous memory words		
06H	Write one memory word		

Exception Code

Exception Code	Description	
01H	Illegal function code	
02H	Illegal data address	
03H	Illegal data count	

When responding to an exception, the MSB (Most Significant Bit) of the function code is automatically set to 1.

(4.1) Read Holding Registers (Function code:03H)

★The broadcast address (0x00) cannot execute.

(4.1.1) Current

Master request: 01 03 00 02 00 02 65 CB

Slave Address	Function Code	Start Address	No. of Registers	Check Code (CRC)
01H	03H	00H , 02H	00H , 02H	65H, CBH

Slave response: 01 03 04 00 00 04 D2 78 AE

Slave	Function	Byte	Doto	Check Code
Address	Code	Count	Data	(CRC)
01H	03H	04H	00H,00H,04H,D2H	78H, AEH

Result: (01) sensor number 1, (00 00 04 D2) current=1234/1000 = 1.234A

(4.1.2) Temperature

Master request: 01 03 00 04 00 02 85 CA

Slave Address	Function Code	Start Address	No. of Registers	Check Code (CRC)
01H	03H	00H , 04H	00H , 02H	85H, CAH

Slave response: 01 03 04 00 00 01 2C FA 7E

Slave	Function	Byte	Data	Check Code
Address	Code	Count	Dala	(CRC)
01H	03H	04H	00H,00H,01H,2CH	FAH, 7EH

Result: (01) sensor number 1, (00 00 01 2C) temperature=300/10 = 30.0°C

(4.2) Write Holding Registers (Function code:06H)

(4.2.1) Reset

Master request: 01 06 00 00 01 00 88 5A

Slave: 01 06 00 00 01 00 88 5A

Slave	Function	Start Address	Data	Check Code
Address	Code	Start Address	Dala	(CRC)
01H	06H	00H , 00H	01H,00H	88H, 5AH

Result: (01) sensor number 1, (01 00) write 256 to reset

(4.2.2) Write Address

Master request: 01 06 00 10 00 01 49 CF Slave response: 01 06 00 10 00 01 49 CF

Slave	Function	Start Address	Doto	Check Code
Address	Code	Start Address	Data	(CRC)
01H	06H	00H , 10H	00H, 01H	49H, CFH

Result: (01) sensor number 1, default address 1, (00 01) write address 1

(4.2.3) Set Measurement Method (AC / DC)

Master request: 01 06 00 20 00 01 49 C0 Slave response: 01 06 00 20 00 01 49 C0

Slave	Function	Start Address	Doto	Check Code
Address	Code	Start Address	Data	(CRC)
01H	06H	00H , 20H	00H, 01H	49H, C0H

Result: (01) sensor number 1, set measurement method to AC (00 01) / DC (00 00)

(4.3) Exception Code

(4.3.1) Function Code Exception

Master request: 01 01 00 00 00 00 3C 0A

Slave	Function	Start Address	No of Dogistors	Check Code
Address	Code	Start Address	No. of Registers	(CRC)
01H	01H	00H, 00H	00H, 00H	3CH, 0AH

Slave response: 01 81 01 81 90

Slave	Function	Evention Code	Check Code
Address	Code	Exception Code	(CRC)
01H	81H	01H	81H, 90H

Result: (01) sensor number 1, (81)=0X80(exception) + 0X01(function code),

(01) Exception Code

(4.3.2) Address Exception

Master request: 01 03 FF FF 00 04 44 2D

Slave response: 01 83 02 C0 F1

Result: (01) sensor number 1,(83)=0X80(exception) + 0X03(function code),

(02) Exception Code

(4.3.3) Data Exception

Master request: 01 03 00 00 FF FF 44 7A

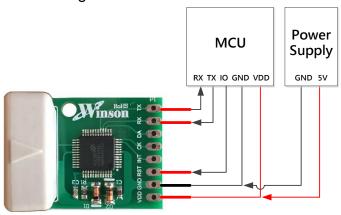
Slave response: 01 83 03 01 31

Result: (01) sensor number 1, (83)=0X80(exception) + 0X03(function code),

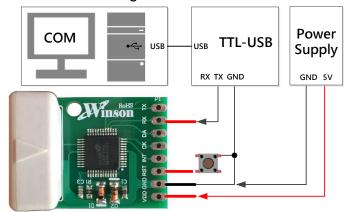
(03) Exception Code

(1) Broadcast (0x00): Set Slave Address to 0x01

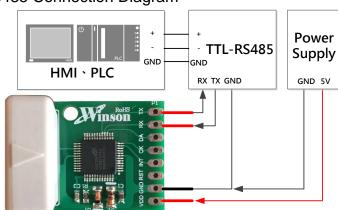
Master request: 00 06 00 10 00 01 48 1E


Slave response: write only, not respond

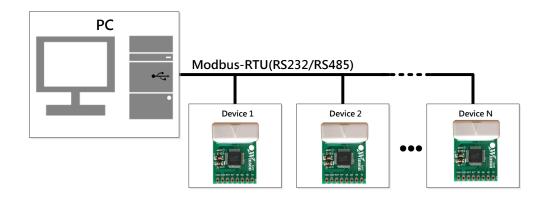
(2) Pin(INT) pull-low at least 200ms to reset the slave address (0x01)

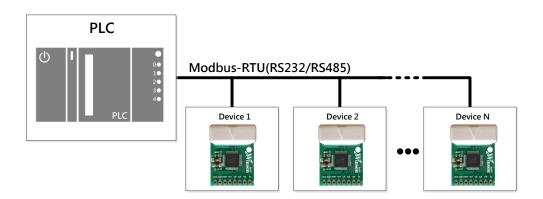


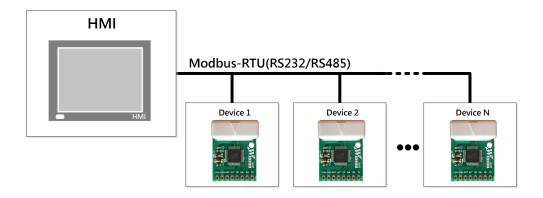
5. Application Diagram:


(5.1) MCU Connection Diagram

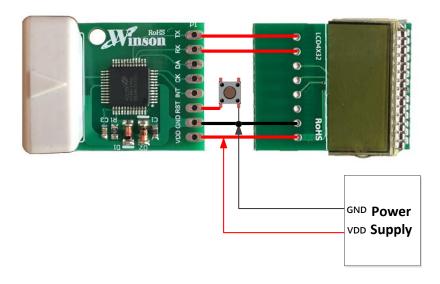
(5.2) TTL to USB Connection Diagram




(5.3) TTL to RS485 Connection Diagram

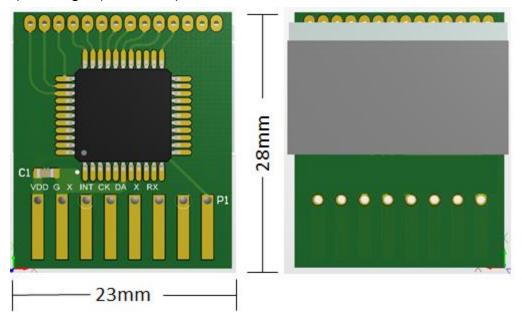


(5.4) Modbus-RTU Communication Diagram


6. WCM-LCD4X32

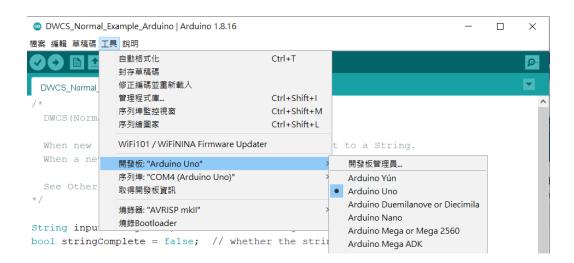
This is a LCD module applied this current module

(6.1) Pad Description


Pad No	Pad Name	I/O	Description	
1	VDD	-	The positive power input pin	
2	GND	-	The system ground	
3	х	-	Reserve	
4	х	-	Reserve	
5	СК	I/O	Contains an arranging and arranging	
6	DA	I/O	System programming, reserve	
7	Х	-	Reserve	
8	RX	0	The data of measured current output. Its output is UART	
			communication. The baud rate is 9.6K bits/sec.	

(6.2) LCM-LCD4X32 Application Diagram

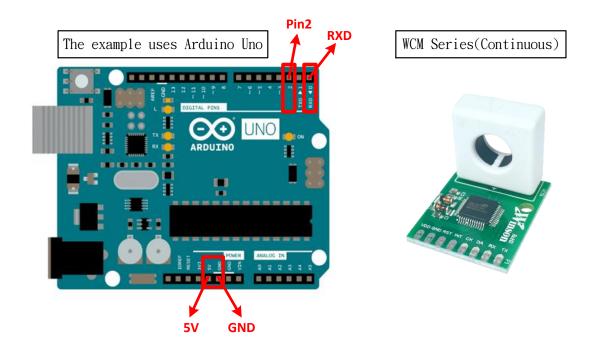
(6.3) Package: (Units: mm)


 $L \times W \times H = 23$ mm $\times 28$ mm $\times 8$ mm

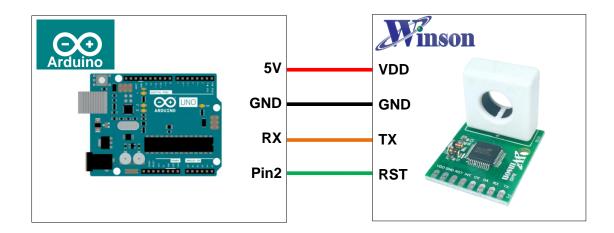
Application Example on Arduino

1. Instructions for Arduino

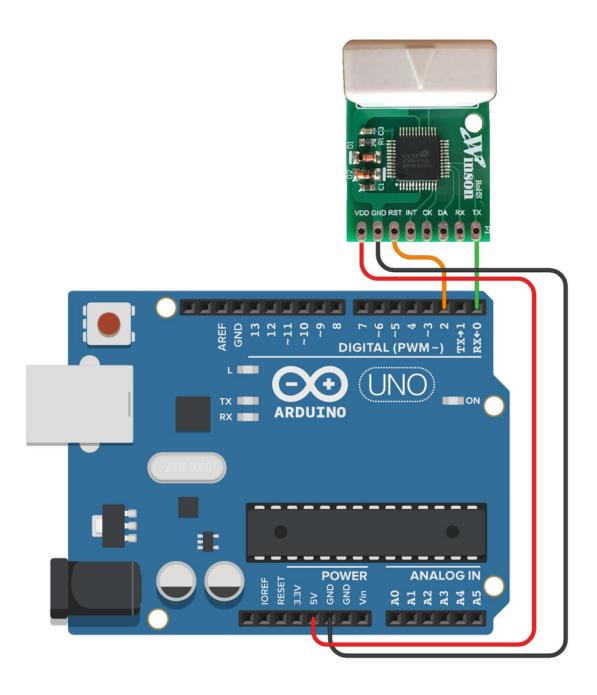
(1.1) Check the type of board is correct.



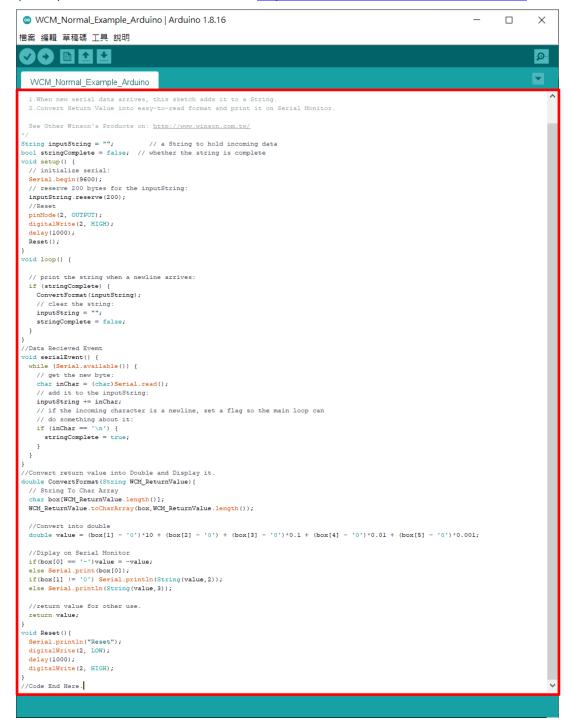
(1.2) Check the port of Arduino is connected and selected correctly.



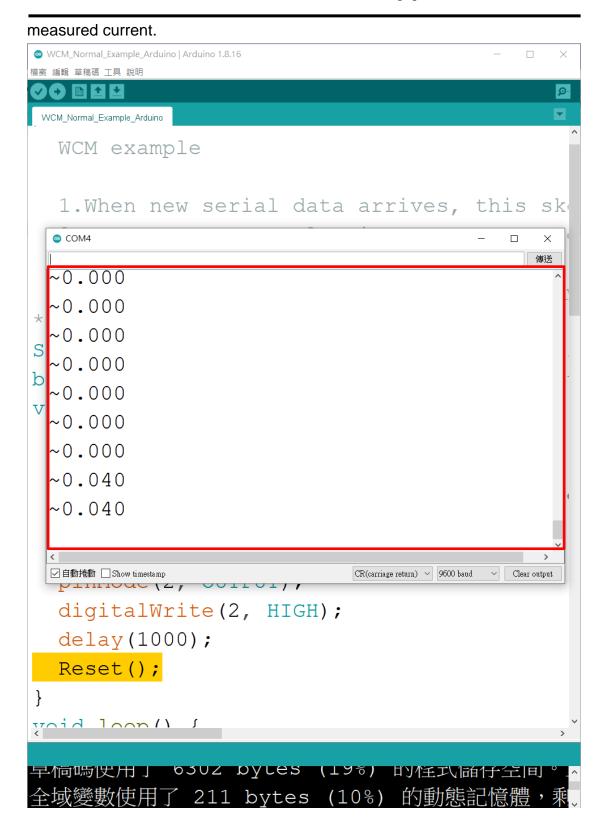
2. Continuous Mode



(2.1) Schematic Diagram



(2.2) Wiring Diagram


- (2.3) Software & Program
- (2.3.1) Code can be download at: http://www.winson.com.tw/Product/156

****CAUTION!!** To prevent upload failure of Arduino, please insert WCM after upload process.

(2.3.2) Upload the example code and open Serial Monitor to display the Winson reserves the right to make changes to improve reliability or manufacturability.

